
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Analysis of the Behavior Pattern of Energy Consumption through Online Clustering Techniques

doi: 10.3390/en16041649
handle: 20.500.12761/1695
Analyzing energy consumption is currently of great interest to define efficient energy management strategies. In particular, studying the evolution of the behavior of the consumption pattern can allow energy policies to be defined according to the time of the year. In this sense, this work proposes to study the evolution of energy behavior patterns using online clustering techniques. In particular, the centroids of the groups constructed by the techniques will represent their consumption patterns. Specifically, two unsupervised online machine learning techniques ideal for the stated objective will be analyzed, X-Means and LAMDA, since they are capable of varying and adapting the number of clusters at runtime. These techniques are applied to energy consumption data in commercial buildings, making groupings on previous groups, in our case, monthly and quarterly. We compared their performance by analyzing the evolution of the patterns over time. The results are very promising since the quality of the consumption patterns obtained is very good according to the performance metrics. Thus, the three main contributions of this article are to propose an approach to determine energy consumption patterns using online non-supervised learning approaches, a methodology to analyze and explain the evolution of energy consumption using centroids of clusters, and a comparison strategy of online learning techniques. The online clustering techniques have qualities of the order of 0.59 and 0.41 for Silhouette and Davies-Boulding, respectively, for X-Means and of the order of 0.71 and 0.24 for Silhouette and Davies-Boulding, respectively, for LAMDA in different datasets of energy. The results are motivating since very good results are obtained in terms of the quality of the clusters, particularly with LAMDA; therefore, analyzing its centroids as the patterns of user behaviors makes a lot of sense.
- Delft University of Technology Netherlands
- University of the Andes Venezuela
- University of Alcalá Spain
- IMDEA Networks Institute Spain
- Universidad de Los Andes (Venezuela) Venezuela
Energy utilization, Office buildings, Technology, Behaviour patterns, X-means;, online clustering techniques, Online clustering techniques, Learning algorithms, Consumption patterns, E-learning, Cluster analysis, energy consumption, Machine learning, Management strategies, Machine-learning, X-means, Online-clustering, T, Energy management, Clustering techniques, Energy consumption, Energy efficiency, machine learning, LAMDA, Behavioral research
Energy utilization, Office buildings, Technology, Behaviour patterns, X-means;, online clustering techniques, Online clustering techniques, Learning algorithms, Consumption patterns, E-learning, Cluster analysis, energy consumption, Machine learning, Management strategies, Machine-learning, X-means, Online-clustering, T, Energy management, Clustering techniques, Energy consumption, Energy efficiency, machine learning, LAMDA, Behavioral research
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
