Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry

Authors: Francesco Asdrubali; Gianluca Grazieschi; Marta Roncone; Francesca Thiebat; Corrado Carbonaro;

Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry

Abstract

The growing attention to sustainability and life cycle issues by European and international policies has recently encouraged the adoption, in the construction sector, of environmental labels able to quantify the impacts on environment associated with the fabrication of several building materials, e.g., their embodied energy and carbon. Within this framework, since walls represent a large percentage of building mass and therefore of embodied impacts, this article collects and analyzes nearly 180 Environmental Products Declarations (EPDs) of wall construction products such as masonry blocks and concrete panels. The data related to the primary energy (renewable and non-renewable) and the global warming potential extracted from the EPDs were compared firstly at the block level (choosing 1 kg as functional unit), enabling designers and manufacturers to understand and reduce the impacts from wall products at the early design stage. As the design progresses, it is therefore necessary to evaluate the environmental impacts related to the entire wall system. For this purpose, this paper proposes a further investigation on some simple wall options having similar thermal performance and superficial mass (the functional unit chosen in this case was equal to 1 m2 with R ≈ 5 m2K/W, Ms ≈ 260 kg/m2). The outcomes showed how the durability of the materials and the potential of disassembly of the wall stratigraphies can play a crucial role in reducing the environmental impact. This paper provides a methodological reference both for manufacturers to reduce impacts and for designers committed to the application of environmental labeling in the design process since they will now be able to compare their products with others.

Country
Italy
Keywords

life cycle assessment; embodied energy; embodied carbon; environmental product declarations (EPD); masonry materials; sustainable buildings; early design stage, Technology, masonry materials, T, embodied carbon, environmental product declarations (EPD), life cycle assessment (LCA); embodied energy; embodied carbon; environmental product declarations (EPD); masonry materials; sustainable buildings; early design stage, embodied energy, life cycle assessment (LCA), sustainable buildings

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
Green
gold