Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of Shale Oil Mobility for the Eocene Shahejie Formation in Liutun Sag, Dongpu Depression, Bohai Bay Basin

Authors: Qiang Yan; Hongwei Ping; Xin Yang; Honglin Liu; Honghan Chen;

Evaluation of Shale Oil Mobility for the Eocene Shahejie Formation in Liutun Sag, Dongpu Depression, Bohai Bay Basin

Abstract

Previous studies have shown that shale oil mobility depends on the relative content of free oil and adsorbed oil. However, the research on how to establish a shale oil mobility evaluation is relatively insufficient. This study aims to use pyrolysis data before and after extraction to accurately identify the content of free oil and adsorbed oil, analyze the influencing factors of shale oil mobility, characterize the hydrocarbon generation and expulsion process, and evaluate shale oil mobility. We utilized an integrated mineralogical and geochemical dataset from the PS18-1 well in the Liutun Sag, Dongpu Depression, Bohai Bay Basin. The results show that the adsorption capacity of type I organic matter (OM) on shale oil is greater than that of type II OM, the OM abundance is of great significance to shale oil mobility, and that quartz and feldspar can promote shale oil mobility. The Tmax corresponding to the threshold of hydrocarbon expulsion is 438~440 °C, and the oil saturation index (OSI) is about 158 mg/g TOC. There are four small intervals: a (3257 m~3260 m), b (3262 m~3267 m), c (3273 m~3278 m), and d (3281 m~3282 m) meeting the conditions of hydrocarbon expulsion. Large-scale hydrocarbon expulsion occurred in interval a, a small amount of hydrocarbon expulsion in interval b, a large amount of hydrocarbon expulsion in interval c, and almost no hydrocarbon expulsion in interval d. Based on the crossplot of S1 and TOC, combined with other parameters such as OSI, hydrocarbon generation potential (HGP), and free and adsorbed oil, we established an evaluation chart of shale oil mobility and divided it into five categories: A, B, C, D, and E. While categories A and C have good mobility and great resource potential, categories B and D have relatively poor mobility and medium resource potential, and category E has little mobility and is an invalid resource.

Related Organizations
Keywords

Technology, T, hydrocarbon expulsion, rock pyrolysis, free oil, adsorbed oil, shale oil mobility

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Top 10%
Average
Average
gold