
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Path-Following Control for Thrust-Vectored Hypersonic Aircraft

doi: 10.3390/en16052501
Thrust vector control (TVC) might be used to control aircraft at large altitudes and in post-stall conditions when aerodynamic control surfaces are ineffective. This study demonstrated that the implementation of the TVC on high-speed aircraft is a reasonable solution and might be an alternative when compared to the complicated reaction control system or large aerodynamic control surfaces. The numerical flight dynamics model of the X-15 experimental aircraft was developed and implemented in MATLAB/Simulink and then used to investigate the proposed solution. The obtained results indicate that the aircraft, equipped with full 3D thrust vectoring and two independent horizontal stabilizers to control the roll angle, was able to achieve flight along the path that was defined by a set of waypoints. This paper also highlights the potential benefits and challenges of using TVC as a control method for aircraft. The results of this study contribute to the growing body of research on aircraft control and simulation. Future work can explore the use of TVC for other aircraft with unique configurations and low maneuverability features.
hypersonic vehicle, Technology, thrust vectoring, path following, T, X-15, X-15; thrust vectoring; path following; hypersonic vehicle
hypersonic vehicle, Technology, thrust vectoring, path following, T, X-15, X-15; thrust vectoring; path following; hypersonic vehicle
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
