
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Understanding the Influence of Biochar Augmentation in Anaerobic Digestion by Principal Component Analysis

doi: 10.3390/en16062523
Biochar addition in anaerobic digestion has been repeatedly reported to improve methane production, however, this ability is not well understood. This work aims to understand and correlate the most important factors influencing anaerobic digestion performance using principal component analysis along with quantitative and qualitative descriptive analysis to evaluate the variations of methane production with the addition of biochar. Reports from the literature using biochar produced from several feedstocks under variable pyrolysis conditions and therefore different compositions were carefully gathered and compared with their own non-biochar controls. Woody-derived biochars, produced at 450–550 °C, containing an ash content of 3.1–6.3%, and an O:C ratio of 0.20, were responsible for having the greatest positive effect. The amount of biochar added to the digesters also influences anaerobic digestion performance. Increasing biochar loads favours the production rate, although this can be detrimental to methane yields, thereby, biochar loads of approximately 0.4–0.6% (w/v) appear to be optimal. This work provides a guide for those interested in biochar augmentation in anaerobic digestion and identifies the main interactions between the variables involved.
- Autonomous University of Coahuila Mexico
- University of Leeds United Kingdom
- Autonomous University of Sinaloa Mexico
- University of Leeds
anaerobic digestion, Technology, principal component analysis, T, biochar, biochar; anaerobic digestion; pyrolysis; principal component analysis, pyrolysis
anaerobic digestion, Technology, principal component analysis, T, biochar, biochar; anaerobic digestion; pyrolysis; principal component analysis, pyrolysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
