Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Decarbonizing the Energy System of Non-Interconnected Islands: The Case of Mayotte

Authors: Anna Flessa; Dimitris Fragkiadakis; Eleftheria Zisarou; Panagiotis Fragkos;

Decarbonizing the Energy System of Non-Interconnected Islands: The Case of Mayotte

Abstract

Islands face unique challenges on their journey towards achieving carbon neutrality by the mid-century, due to the lack of energy interconnections, limited domestic energy resources, extensive fossil fuel dependence, and high load variance requiring new technologies to balance demand and supply. At the same time, these challenges can be turned into a great opportunity for economic growth and the creation of jobs with non-interconnected islands having the potential to become transition frontrunners by adopting sustainable technologies and implementing innovative solutions. This paper uses an advanced energy–economy system modeling tool (IntE3-ISL) accompanied by plausible decarbonization scenarios to assess the medium- and long-term impacts of energy transition on the energy system, emissions, economy, and society of the island of Mayotte. The model-based analysis adequately captures the specificities of Mayotte and examines the complexity, challenges, and opportunities to decarbonize the island’s non-interconnected energy system. The energy transition necessitates the adoption of ambitious climate policy measures and the extensive deployment of low- and zero-carbon technologies both in the demand and supply sides of the energy system, accounting for the unique characteristics of each individual sector, while sectoral integration is also important. To reduce emissions from hard-to-abate sectors, such as transportation and industry, the measures and technologies can include the installation and use of highly efficient equipment, the electrification of end uses (such as the widespread adoption of electric vehicles), the large roll-out of renewable energy sources, as well as the production and use of green hydrogen and synthetic fuels.

Keywords

Technology, decarbonization, T, Mayotte, energy transition pathways, decarbonization; energy transition pathways; Mayotte; energy system planning tools; RES penetration; non-interconnected islands, non-interconnected islands, energy system planning tools, RES penetration

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold
Funded by
Related to Research communities
Energy Research