Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.20944/prepr...
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fuzzy-Based Failure Modes, Effects, and Criticality Analysis Applied to Cyber-Power Grids

Authors: Andrés A. Zúñiga; João F. P. Fernandes; Paulo J. C. Branco;

Fuzzy-Based Failure Modes, Effects, and Criticality Analysis Applied to Cyber-Power Grids

Abstract

Failure modes, effects, and criticality analysis (FMECA) is a qualitative risk analysis method widely used in various industrial and service applications. Despite its popularity, the method suffers from several shortcomings analyzed in the literature over the years. The classical approach to obtain the failure modes’ risk level does not consider any relative importance between the risk factors and may not necessarily represent the real risk perception of the FMECA team members, usually expressed by natural language. This paper introduces the application of Type-I fuzzy inference systems (FIS) as an alternative to improve the failure modes’ risk level computation in the classic FMECA analysis and its use in cyber-power grids. Our fuzzy-based FMECA considers first a set of fuzzy variables defined by FMECA experts to embody the uncertainty associated with the human language. Second, the “seven plus or minus two” criterion is used to set the number of fuzzy sets to each variable, forming a rule base consisting of 125 fuzzy rules to represent the risk perception of the experts. In the electrical power systems framework, the new fuzzy-based FMECA is utilized for reliability analysis of cyber-power grid systems, assessing its benefits relative to a classic FMECA. The paper provides the following three key contributions: (1) representing the uncertainty associated with the FMECA experts using fuzzy sets, (2) representing the FMECA experts’ reasoning and risk perception through fuzzy-rule-based reasoning, and (3) applying the proposed fuzzy approach, which is a promissory method to accurately define the prioritization of failure modes in the context of reliability analysis of cyber-power grid systems.

Related Organizations
Keywords

Technology, T, cyber-power grids, risk assessment, FMECA; fuzzy inference systems; fuzzy-based FMECA; risk assessment; cyber-power grids, fuzzy-based FMECA, electrical_electronic_engineering, fuzzy inference systems, FMECA

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green
gold