
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Condition-Based Maintenance of Gensets in District Heating Using Unsupervised Normal Behavior Models Applied on SCADA Data

doi: 10.3390/en16093719
Condition-Based Maintenance of Gensets in District Heating Using Unsupervised Normal Behavior Models Applied on SCADA Data
Increasing interest in natural gas-fired gensets is motivated by District Heating (DH) network applications, especially in urban areas. Even if they represent customary solutions, when used in DH, duty regimes are driven by network thermal energy demands resulting in discontinuous operation, which affects their remaining useful life. As such, the attention on effective condition-based maintenance has gained momentum. In this paper, a novel unsupervised anomaly detection framework is proposed for gensets in DH networks based on Supervisory Control And Data Acquisition (SCADA) data. The framework relies on multivariate Machine-Learning (ML) regression models trained with a Leave-One-Out Cross-Validation method. Model residuals generated during the testing phase are then post-processed with a sliding threshold approach based on a rolling average. This methodology is tested against nine major failures that occurred on the gas genset installed in the Aosta DH plant in Italy. The results show that the proposed framework successfully detects anomalies and anticipates SCADA alarms related to unscheduled downtime.
early fault detection, multi-MW gensets SCADA data, Technology, multivariate time series, T, multivariate time series; early fault detection; condition based maintenance; multi-MW gensets SCADA data, condition based maintenance
early fault detection, multi-MW gensets SCADA data, Technology, multivariate time series, T, multivariate time series; early fault detection; condition based maintenance; multi-MW gensets SCADA data, condition based maintenance
1 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
