Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MOF-801/Graphene Adsorbent Material for Greenhouse Climate Control System—Numerical Investigation

Authors: Andrew N. Aziz; Raya Al-Dadah; Saad Mahmoud; Mohamed A. Ismail; Mohammed K. Almesfer; Marwa F. El-Kady; Hassan Shokry;

MOF-801/Graphene Adsorbent Material for Greenhouse Climate Control System—Numerical Investigation

Abstract

Greenhouses with efficient controlled environment offer a promising solution for food security against the impacts of increasing global temperatures and growing water scarcity. However, current technologies used to achieve this controlled environment consume a significant amount of energy, which impacts on operational costs and CO2 emissions. Using advanced metal organic framework materials (MOFs) with superior water adsorption characteristics, this work investigates the development of a new technology for a greenhouse-controlled environment. The system consists of MOF coated heat exchanger, air to air heat exchanger, and evaporative cooler. A three-dimensional computational fluid dynamics (CFD) model was developed using COMSOL software and experimentally validated for the MOF-801/Graphene coated heat exchanger (DCHE) to determine the best cycle time and power input. It was found that using desorption time of 16 min and power input of 1.26 W, the maximum water removal rate was obtained from MOF-801/Graphene of 274.4 g/kgMOF/W.hr. In addition, an overall mathematical model for the greenhouse climate control was developed and used to investigate the effects of air humidity and velocity on the input air conditions to the greenhouse. Results showed that with high relative humidity levels of 90% in the greenhouse can be conditioned to reach the required relative humidity of 50%.

Keywords

modelling, MATLAB, COMSOL, Technology, adsorption, T, MOF-801/Graphene, modelling; simulation; MATLAB; COMSOL; MOF-801/Graphene; adsorption, simulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold
Related to Research communities
Energy Research