

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An Enhanced Path Planner for Electric Vehicles Considering User-Defined Time Windows and Preferences

handle: 11311/1242112
An Enhanced Path Planner for Electric Vehicles Considering User-Defined Time Windows and Preferences
A number of decision support tools facilitating the use of Electric Vehicles (EVs) have been recently developed. Due to the EVs’ limited autonomy, routing and path planning are the main challenges treated in such tools. Specifically, determining at which Charging Stations (CSs) to stop, and how much the EV should charge at them is complex. This complexity is further compounded by the fact that charging times depend on the CS technology, the EV characteristics, and follow a nonlinear function. Considering these factors, we propose a path-planning methodology for EVs with user preferences, where charging is performed at public CSs. To achieve this, we introduce the Electric Vehicle Shortest Path Problem with time windows and user preferences (EVSPPWP) and propose an efficient heuristic algorithm for it. Given an origin and a destination, the algorithm prioritizes CSs close to Points of Interest (POIs) that match user inputted preferences, and user-defined time windows are considered for activities such as lunch and spending the night at hotels. The algorithm produces flexible solutions by considering clusters of charging points (CPs) as separate CSs. Furthermore, the algorithm yields resilient paths by ensuring that recommended paths have a minimum number of CSs in their vicinity. The main contributions of our methodology are the following: modeling user-defined time windows, including user-defined weights for different POI categories, creating CSs based on clusters of CPs with sufficient proximity, using resilient paths, and proposing an efficient algorithm for solving the EVSPPWP. To facilitate the use of our methodology, the algorithm was integrated into a web interface. We demonstrate the use of the web interface, giving usage examples and comparing different settings.
electric vehicles; shortest path; points of interest; path planner, shortest path, Technology, points of interest, T, electric vehicles, shortest path, points of interest, path planner, path planner, electric vehicles
electric vehicles; shortest path; points of interest; path planner, shortest path, Technology, points of interest, T, electric vehicles, shortest path, points of interest, path planner, path planner, electric vehicles
1 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 8 download downloads 10 - 8views10downloads
Data source Views Downloads ZENODO 8 10


