
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Development and Control of a Switched Capacitor Multilevel Inverter

doi: 10.3390/en16114269
This article offers a novel boost inverter construction with a Nine-level quadruple voltage boosting waveform. The primary drawback of conventional MLI is the need for a high voltage DC-DC converter to increase the voltage when using renewable energy sources. Consequently, the developed method, complete with a quadruple voltage boost ability, can alleviate that shortcoming by automatically increased the incoming voltage. A single DC source, two switching capacitors, and eleven switches are all that are used in the newly presented architecture. The voltage of the capacitor automatically balances. The switched capacitor MLI is distinguished by the fewer parts that are required and the substitution of a capacitor for a DC source. The switching capacitor has to be charged and discharged properly in order to produce the nine-level output voltage waveform. The SPSC unit makes these levels attainable. To achieve voltage boosting, switched capacitors are coupled in parallel and series in the conduction channel. The quality of this proposed topology has been analyzed through different parameters based on the components count, THD, and cost; the resulting efficiency reaches 97.85%. The switching order of the proposed method has been controlled by the Nearest Level Modulation Method (NLC). MATLAB and PLECS software were used to evaluate the constructed Nine-level converter.
- Aligarh Muslim University India
- King Saud University Saudi Arabia
- Aligarh Muslim University India
- Aligarh Muslim University India
- King Saud University Saudi Arabia
Technology, nearest level control; switched capacitor multilevel inverter total harmonic distortion; power loss analysis, T, power loss analysis, nearest level control, switched capacitor multilevel inverter total harmonic distortion
Technology, nearest level control; switched capacitor multilevel inverter total harmonic distortion; power loss analysis, T, power loss analysis, nearest level control, switched capacitor multilevel inverter total harmonic distortion
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
