
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimizing Integration of Fuel Cell Technology in Renewable Energy-Based Microgrids for Sustainable and Cost-Effective Energy

doi: 10.3390/en16114482
This article presents a cost-effective and reliable solution for meeting the energy demands of remote areas through the integration of multiple renewable energy sources. The proposed system aims to reduce dependence on fossil fuels and promote sustainable development by utilizing accessible energy resources in a self-contained microgrid. Using the Hybrid Optimization Model for Electric Renewable (HOMER) software, the study examined the optimal combination of energy sources and storage technologies for an integrated hybrid renewable energy system (IHRES) in the Patiala location of Punjab. The total life cycle cost (TLCC) is the main objective of this manuscript. The HOMER result is taken as a reference, and the results are compared with the optimization hybrid algorithm (PSORSA). From this, it is clear that the proposed algorithm has less TLCC as compared to others. Two combinations of energy sources and storage technologies were considered, namely solar photovoltaic (PV)/battery and solar PV/fuel cell (FC). The results showed that the solar PV/FC combination is more cost-effective, reliable, and efficient than the solar PV/battery combination. Additionally, the IHRES strategy was found to be more economically viable than the single energy source system, with lower total life cycle costs and greater reliability and efficiency. Overall, the proposed IHRES model offers a promising solution for meeting energy demands in remote areas while reducing dependence on fossil fuels and promoting sustainable development.
- Shree Guru Gobind Singh Tricentenary University India
- Chitkara University India
- University of Ottawa Canada
- Sejong University Korea (Republic of)
- Universidad de Ingeniería y Tecnología Peru
Technology, FC, T, PV, fuel cell, green energy, sustainable energy, solar photovoltaic, solar photovoltaic; PV; FC; fuel cell; sustainable energy; green energy; energy harvesting; HOMER; battery; smart grids; TLCC
Technology, FC, T, PV, fuel cell, green energy, sustainable energy, solar photovoltaic, solar photovoltaic; PV; FC; fuel cell; sustainable energy; green energy; energy harvesting; HOMER; battery; smart grids; TLCC
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
