Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Advancements on Optimization Algorithms Applied to Wave Energy Assessment: An Overview on Wave Climate and Energy Resource

Authors: Daniel Clemente; Felipe Teixeira-Duarte; Paulo Rosa-Santos; Francisco Taveira-Pinto;

Advancements on Optimization Algorithms Applied to Wave Energy Assessment: An Overview on Wave Climate and Energy Resource

Abstract

The wave energy sector has not reached a sufficient level of maturity for commercial competitiveness, thus requiring further efforts towards optimizing existing technologies and making wave energy a viable alternative to bolster energy mixes. Usually, these efforts are supported by physical and numerical modelling of complex physical phenomena, which require extensive resources and time to obtain reliable, yet limited results. To complement these approaches, artificial-intelligence-based techniques (AI) are gaining increasing interest, given their computational speed and capability of searching large solution spaces and/or identifying key study patterns. Under this scope, this paper presents a comprehensive review on the use of computational systems and AI-based techniques to wave climate and energy resource studies. The paper reviews different optimization methods, analyses their application to extreme events and examines their use in wave propagation and forecasting, which are pivotal towards ensuring survivability and assessing the local wave operational conditions, respectively. The use of AI has shown promising results in improving the efficiency, accuracy and reliability of wave predictions and can enable a more thorough and automated sweep of alternative design solutions, within a more reasonable timeframe and at a lower computational cost. However, the particularities of each case study still limit generalizations, although some application patterns have been identified—such as the frequent use of neural networks.

Country
Portugal
Keywords

Technology, T, wave conditions prediction, Engineering and technology, Technological sciences, Engineering and technology, artificial intelligence, neural networks, metaheuristic algorithms, Ciências Tecnológicas, Ciências da engenharia e tecnologias, Ciências da engenharia e tecnologias, renewable wave energy, evolutionary algorithms

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold
Related to Research communities
Energy Research