
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Overview of Photovoltaic and Wind Electrical Power Hybrid Systems

doi: 10.3390/en16124778
The overexploitation of non-renewable fossil resources has led to dangerous warming of our planet due to greenhouse gas emissions. The main reason for this problem is the increase in global energy demand. The rising prices of oil and gas have pushed governments around the world to turn to renewable energy, especially solar and wind power. For this reason, the present paper aimed to focus on photovoltaic and wind energy systems. However, exploitation of these two sources individually is not always easy because of their intermittent and irregular characters. Therefore, the obvious solution is the hybridisation of these two sources, which, when used alongside other systems such as batteries, increases the reliability, availability, and efficiency of these renewable sources. The main objective of this paper is to give an overview of different configurations of hybrid solar and wind energy conversion systems. First, the behaviour of each system, as well as their mathematical models, characteristics, and existing topologies, is presented. Then, the control strategies, optimal configurations, and sizing techniques, as well as different energy management strategies, of these hybrid PV–wind systems are presented.
- University of Batna 2 Algeria
- Sidi Mohamed Ben Abdellah University Morocco
- University of Poitiers France
- University of Batna Algeria
- University of Picardie Jules Verne France
Technology, renewable energies, T, EMS, solar energy, hybrid renewable energy systems, PMS, wind energy
Technology, renewable energies, T, EMS, solar energy, hybrid renewable energy systems, PMS, wind energy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
