
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Two-Step Site Selection Concept for Underground Pumped Hydroelectric Energy Storage and Potential Estimation of Coal Mines in Henan Province

doi: 10.3390/en16124811
In the context of carbon neutrality, the phase-out of coal from the energy structure has resulted in numerous old coal mines that possess abundant underground space resources suitable for underground pumped hydroelectric energy storage (UPHES). Site selection and estimation of potential are critical to the planning and implementation of UPHES in old coal mines. This paper introduces a two-step site selection concept, including a screening assessment followed by a comprehensive assessment, to determine suitable locations for UPHES. The screening indicators in the screening assessment comprise geological features, mine water disasters, and minimum installed capacity, while the analytic hierarchy process (AHP) is applied in the comprehensive assessment. Additionally, coal mines in Henan Province are preliminarily screened through the screening assessment and the potential for UPHES is thoroughly investigated. The estimated volume of the drifts and shafts in old coal mines is approximately 1.35 × 107 m3, while in producing coal mines, it is around 2.96 × 107 m3. Furthermore, the corresponding annual potential for UPHES is 1468.9 GWh and 3226.3 GWh, respectively. By consuming surplus wind and solar power, UPHES is able to reduce 4.68 × 105 tonnes of carbon dioxide (CO2) emissions. The study provides preliminary guidance for policy-makers in developing UPHES in old coal mines.
- Kunming University of Science and Technology China (People's Republic of)
- Zhengzhou University China (People's Republic of)
- Sichuan University China (People's Republic of)
- Kunming University of Science and Technology China (People's Republic of)
- Clausthal University of Technology Germany
coal mines; underground pumped hydroelectric energy storage; site selection; the potential for UPHES, Technology, T, coal mines, site selection, underground pumped hydroelectric energy storage, the potential for UPHES
coal mines; underground pumped hydroelectric energy storage; site selection; the potential for UPHES, Technology, T, coal mines, site selection, underground pumped hydroelectric energy storage, the potential for UPHES
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
