Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Two-Step Site Selection Concept for Underground Pumped Hydroelectric Energy Storage and Potential Estimation of Coal Mines in Henan Province

Authors: Qianjun Chen; Zhengmeng Hou; Xuning Wu; Shengyou Zhang; Wei Sun; Yanli Fang; Lin Wu; +2 Authors

A Two-Step Site Selection Concept for Underground Pumped Hydroelectric Energy Storage and Potential Estimation of Coal Mines in Henan Province

Abstract

In the context of carbon neutrality, the phase-out of coal from the energy structure has resulted in numerous old coal mines that possess abundant underground space resources suitable for underground pumped hydroelectric energy storage (UPHES). Site selection and estimation of potential are critical to the planning and implementation of UPHES in old coal mines. This paper introduces a two-step site selection concept, including a screening assessment followed by a comprehensive assessment, to determine suitable locations for UPHES. The screening indicators in the screening assessment comprise geological features, mine water disasters, and minimum installed capacity, while the analytic hierarchy process (AHP) is applied in the comprehensive assessment. Additionally, coal mines in Henan Province are preliminarily screened through the screening assessment and the potential for UPHES is thoroughly investigated. The estimated volume of the drifts and shafts in old coal mines is approximately 1.35 × 107 m3, while in producing coal mines, it is around 2.96 × 107 m3. Furthermore, the corresponding annual potential for UPHES is 1468.9 GWh and 3226.3 GWh, respectively. By consuming surplus wind and solar power, UPHES is able to reduce 4.68 × 105 tonnes of carbon dioxide (CO2) emissions. The study provides preliminary guidance for policy-makers in developing UPHES in old coal mines.

Related Organizations
Keywords

coal mines; underground pumped hydroelectric energy storage; site selection; the potential for UPHES, Technology, T, coal mines, site selection, underground pumped hydroelectric energy storage, the potential for UPHES

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
gold