
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Impedance Spectroscopy Analysis of Perovskite Solar Cell Stability

doi: 10.3390/en16134951
handle: 11588/944804
The aim of this work is to investigate the degradation of perovskite solar cells (PSCs) by means of impedance spectroscopy, a highly sensitive characterization technique used to establish the electrical response of a device in a nondestructive manner. In this paper, PSCs with two different electron transport layers (ETLs) are studied: PSCs with undoped SnO2 as an ETL are compared to PSCs with an ETL composed of graphene-doped SnO2 (G-SnO2). Experimental data were collected immediately after fabrication and after one week, monitoring both impedance spectroscopy and dark current-voltage (I-V) curves. It was observed that, in the case of the undoped PSCs, the degradation of the solar cells affected both the AC behavior of the devices, modifying the associated Nyquist plots, and the DC behavior, observable from the dark I-V measurements. Conversely, the solar cells with G-SnO2 showed no variation. Considering the Nyquist plots, a quantitative analysis was performed by comparing the parameters of a proper equivalent circuit model. The results were coherent with those achieved in the DC analysis, thus proving that the analysis of impedance spectra, supported with dark I-V curves, allows one to gain a deeper knowledge of the degradation phenomena of perovskite solar cells. This study opens the door for further improvement of these devices through a better understanding of their electrical behavior.
impedance spectroscopy, Technology, T, stability, perovskite; solar cell; impedance spectroscopy; stability; degradation, solar cell, degradation; impedance spectroscopy; perovskite; solar cell; stability, perovskite, degradation
impedance spectroscopy, Technology, T, stability, perovskite; solar cell; impedance spectroscopy; stability; degradation, solar cell, degradation; impedance spectroscopy; perovskite; solar cell; stability, perovskite, degradation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
