Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico

Authors: Stephany Isabel Vallarta-Serrano; Ana Bricia Galindo-Muro; Riccardo Cespi; Rogelio Bustamante-Bello;

Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico

Abstract

Cities consume most of the energy used worldwide and are the largest emitters of greenhouse gases (GHGs) that cause global warming, mainly from the road transport sector. In megacities, the light vehicle fleet is responsible for most of the emissions in the sector. Among this fleet, light commercial vehicles (CVs), which have grown to support instant delivery services demand, are also responsible for emissions and traffic congestion. Due to the urgency to reduce transport impacts, emission mitigation strategies are required. Aligned with this aim, this article evaluates GHG emissions along the entire process of energy production, called the operating trajectory, and also known as Well-To-Wheel (WTW), in four combinations of transportation modes for last-mile delivery services, using light CVs, such as electric or diesel vans, and electric cargo bikes (E-bikes). The analysis is firstly conducted in a local area of Mexico City and subsequently compared to other countries around the world. In this respect, the main result of this article shows that in the case study conducted in the Metropolitan Zone of the Valley of Mexico, the energy consumption of a given route for an electric van combined with E-bikes generates 24% less GHG emissions than a diesel van combined with E-bikes. Therefore, the achievement of effective mitigation strategies for GHG emissions reduction through vehicle electrification requires WTW emission analysis and quantification, optimal route design, a combination of sustainable transport modes and clean energy generation.

Keywords

Technology, T, megacities, Well-To-Wheel, GHG emissions; energy consumption; Well-To-Wheel; commercial transport; instant deliveries; megacities, GHG emissions, instant deliveries, energy consumption, commercial transport

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold