Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Hybrid Artificial Ecosystem Optimizer and Incremental-Conductance Maximum-Power-Point-Tracking-Controlled Grid-Connected Photovoltaic System

Authors: Burhan U Din Abdullah; Suman Lata; Shiva Pujan Jaiswal; Vikas Singh Bhadoria; Georgios Fotis; Athanasios Santas; Lambros Ekonomou;

A Hybrid Artificial Ecosystem Optimizer and Incremental-Conductance Maximum-Power-Point-Tracking-Controlled Grid-Connected Photovoltaic System

Abstract

When tracking the peak power point in PV systems, incremental conductance is the most common technique used. This approach preserves the first trap in the local peak power point, but it is unable to quickly keep up with the ever-changing peak power point under varying irradiance and temperature conditions. In this paper, the authors propose a hybrid algorithm, combining an artificial ecosystem optimizer and an incremental-conductance-based MPPT to solve these issues of traditional MPPT under varying irradiance and temperature conditions. The proposed hybrid algorithm has been applied to three scenarios, namely the constant irradiance condition, the varying irradiance condition, and the varying temperature condition. Under the constant irradiance condition, the PV array is maintained at a temperature of 25 °C and an irradiance of 1000 W/m2. The voltage of the DC link of the neutral-pointed-clamped inverter is maintained at 1000 V. Under the varying irradiance condition, the irradiance of the PV array is increased from 400 W/m2 to 1000 W/m2with a step size of 0.2 s. The same step size is maintained while decreasing the irradiance level from 1000 W/m2 to 400 W/m2, with a step change of 0.2 s. However, the temperature is maintained at 25 °C. Under the varying temperature condition, the temperature of the PV array varies from 35 °C, 25 °C, 15 °C, 10 °C, 15 °C, 25 °C, and 35 °C with a step size of 0.2 s, and the irradiance is maintained at 1000 W/m2. The DC link voltage in all three conditions is maintained at 1000 V, which confirms that the hybrid algorithm has been able to vary the duty cycle of the pulse wave modulation generator in such a manner that the variable DC voltage produced by the PV array has been changed by the flyback converter into a stable DC voltage. The simulation results show that the total harmonic distortion (THD) under all the simulated scenarios is within 5%, which agrees with IEEE standards. In the future, this algorithm may be compared with other types of available MPPTs under partial shading.

Keywords

Technology, hybrid MPPT, T, MPPT, grid connected PV, MPPT; PV system; artificial ecosystem optimizer; hybrid MPPT; grid connected PV, artificial ecosystem optimizer, PV system

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
gold