Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimization of Flow Channel Design with Porous Medium Layers in a Proton Exchange Membrane Electrolyzer Cell

Authors: Wei-Hsin Chen; Yaun-Sheng Wang; Min-Hsing Chang; Liwen Jin; Lip Huat Saw; Chih-Chia Lin; Ching-Ying Huang;

Optimization of Flow Channel Design with Porous Medium Layers in a Proton Exchange Membrane Electrolyzer Cell

Abstract

This study aims to optimize the flow channel design for a proton exchange membrane electrolyzer cell (PEMEC) to minimize the pressure drop across the cell. The pattern of parallel flow channels is considered with a dual-porous layer structure sandwiched between the flow channel plate and the catalyst layer. Four geometric factors are considered in the optimization analysis, including the width of the flow channel, the depth of the flow channel, the particle diameter of the large-pore porous layer, and the particle diameter of the small-pore porous layer. Computational fluid dynamics (CFD) is used to simulate the flow field, and based on the results of the CFD simulation, the Taguchi method is employed to analyze the optimal flow channel design. The importance of the factors is further analyzed by the analysis of variance (ANOVA) method. Three inlet velocities are assigned in the Taguchi analysis, which are 0.01, 0.1332, and 0.532 m/s, and then an orthogonal array is constructed and analyzed for each inlet flow condition. It is found that the optimal combination of the factors is the depth of the flow channel 1 mm, the width of the flow channel 3 mm, the particle diameter of the large-pore porous layer 0.212 mm, and the particle diameter of the small-pore porous layer 0.002 mm. The pressure drop across the PEMEC is minimized at the condition with the optimal combination of the factors. The ANOVA analysis shows that the depth of the flow channel exhibits the most significant impact on the pressure drop, while the other factors play minor roles only.

Keywords

Technology, proton exchange membrane electrolyzer cell (PEMEC); pressure drop; porous layer; Taguchi method; analysis of variance (ANOVA), T, porous layer, analysis of variance (ANOVA), proton exchange membrane electrolyzer cell (PEMEC), Taguchi method, pressure drop

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold