Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation Method of Internal Resistance for Repurposing Using Middle and Large-Sized Batteries

Authors: Min-Gyu Lim; Jae-Beom Jung; Nam-Hyun Kim; Ji-Myung Kim; Jian Shen; Dae-Seok Rho;

Evaluation Method of Internal Resistance for Repurposing Using Middle and Large-Sized Batteries

Abstract

The number of used batteries is expected to dramatically increase in the near future due to the expansion of the electric vehicle (EV) market globally. Accordingly, the Korean government has improved the supporting structures for the recycling system for used batteries, and in particular, in the field of repurposing, various studies are being conducted with a focus on effective evaluation methods that can secure the performance and safety of batteries after use. The repurposing of used batteries is mostly adapted in the field of energy storage systems for normally used EV batteries and a total inspection before repurposing is required due to battery characteristics that can vary depending on the operational environments of and accidents involving medium- and large-sized batteries for EVs and energy storage systems (ESSs) that have been occurring continuously for the past few years. Therefore, this paper investigates the operating mechanisms of the internal resistance test method and implements a test device for middle- and large-sized cells and packs. Based on the proposed test method, the internal resistance of nickel manganese cobalt (NMC)-type commercial large batteries is analyzed according to the SOC (state of charge), SOH (state of health), ambient temperature, and connection degradation of batteries. The distribution degrees of the alternative current (AC) internal resistance (IR) and direct current (DC) internal resistance (IR) measurement methods under state of health (SOH) test conditions are about 7% and 50%. It was found that the DC IR measurement method is more effective in diagnosing battery cell degradation. The distribution degree of DC IR measurements for the degraded connection condition shows an increase of less than 1% regardless of the state of charge (SOC), while the distribution degree of the AC IR measurements shows an increase of up to 319%, indicating that the AC IR method is more effective than the DC IR method in identifying connection degradation. It is confirmed that the proposed method is effective in internal resistance measurement and safety evaluations for the repurposing of batteries.

Keywords

li-ion battery, Technology, T, used battery, DC IR, resistance, li-ion battery; used battery; repurpose; recycle; resistance; DC IR; AC IR, recycle, repurpose

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities
Energy Research