
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Research on the Energy Management Strategy of a Hybrid Energy Storage Type Railway Power Conditioner System

doi: 10.3390/en16155759
High-speed railways generate a large amount of regenerative braking energy during operation but this energy is not utilized efficiently. In order to realize the recycling of regenerative braking energy of high-speed railways, the hybrid energy storage type railway power conditioner (RPC) system is proposed. The working principle and the control strategy of the system are studied. The energy management strategy consisting of a hybrid energy storage system charging and discharging strategy and variational modal decomposition (VMD) power allocation strategy is proposed. Three system operation modes are proposed: the power of the hybrid energy storage system is decomposed by VMD and an interrelationship number is proposed to determine the lithium battery and supercapacitor power. The hardware-in-the-loop test experiments are conducted by the StarSim power electronics small-step real-time simulator from Modeling Tech and the validation analysis is carried out on MATLAB/Simulink with the actual measurement data of a traction substation on the Lanzhou–Xinjiang line. The results verify that the proposed strategy can effectively recycle the regenerative braking energy, realize the peak-shaving effect on the load, and reduce the energy consumption of the train.
- Lanzhou Jiaotong University China (People's Republic of)
- Lanzhou Jiaotong University China (People's Republic of)
high-speed railway; hybrid energy storage system; energy management strategy; railway power conditioner; regenerative braking energy, Technology, T, regenerative braking energy, hybrid energy storage system, high-speed railway, railway power conditioner, energy management strategy
high-speed railway; hybrid energy storage system; energy management strategy; railway power conditioner; regenerative braking energy, Technology, T, regenerative braking energy, hybrid energy storage system, high-speed railway, railway power conditioner, energy management strategy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
