Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design and Analysis of a Temperature-Sensitive Thermal Meta-Regulator Possessing Different Heat Distribution Modes

Authors: Yiyi Li; Haochun Zhang; Yingjie Chen; Jian Zhang;

Design and Analysis of a Temperature-Sensitive Thermal Meta-Regulator Possessing Different Heat Distribution Modes

Abstract

The control and regulation of thermal fields is of great significance in solving various thermal management problems in human life. Benefitting from the emerging space transformation technique and thermal meta-material, thermal meta-structures with unique thermal control capabilities have been rapidly developed in recent years. However, the exploration of the functional diversity of thermal meta-materials and structures is still inadequate; most related works are still limited to the single-field control effect and lack sensitivity to external environment changes. For the designed functional structures, observation and analysis of energy fluctuations and irreversible heat loss during the regulation process of the diffusive thermal field are also scare. Therefore, in this current work, we design a thermal meta-regulator (based on the space transformation theory) that is capable of differently distributing thermal energy according to the heat input direction and switching field control pattern with the change of ambient temperature. In addition to the common indicator of temperature, we also introduce the local entropy production rate and the total entropy production in the thermo-dynamic category to carry out entropy analysis of the energy processes involved in the thermal meta-regulator, making a multi-angle evaluation of the structural performance. Furthermore, we use the statistical response surface method to explore the comprehensive/interaction effect of multiple influencing factors on the thermal meta-regulator; the derived regression equations can be used to accurately predict the structural effects under different design schemes and temperature conditions. Our work further enriches the diversity and flexibility of thermal field manipulation manners and the demonstrated functions are also expected to be realized in other physical fields.

Related Organizations
Keywords

Technology, T, space transformation; thermal metamaterial; temperature sensitive; differential response; entropy analysis; response surface method, thermal metamaterial, temperature sensitive, response surface method, entropy analysis, differential response, space transformation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities
Energy Research