
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Applications of Energy Storage Systems in Enhancing Energy Management and Access in Microgrids: A Review

doi: 10.3390/en16165930
As the world’s population continues to grow and the demand for energy increases, there is an urgent need for sustainable and efficient energy systems. Renewable energy sources, such as wind and solar power, have the potential to play a significant role in meeting this demand, but their intermittency can make integration into existing energy systems a challenge. Moreover, the development of sustainable energy systems has become even more critical in recent years, due to a confluence of events, including the decline in fuel prices, geopolitical conflicts, and the recent COVID-19 pandemic. The decrease in fuel prices has led to a decline in investment in renewable energy and has slowed the transition to sustainable energy systems. Additionally, geopolitical conflicts and pandemics have highlighted the need for resilient and self-sufficient energy systems that can operate independently of external factors. Also, energy storage technologies play a critical role in achieving this goal by providing reliable backup power and enabling microgrids to operate independently of the larger power grid. As such, developing efficient and effective energy storage technologies is essential for creating sustainable energy systems that can meet the demands of modern society while mitigating the impact of external factors. In this regard, this work provides an overview of microgrids’ latest energy storage technologies, including their applications, types, integration strategies, optimization algorithms, software, and uncertainty analysis. Energy storage technologies have a wide range of applications in microgrids, including providing backup power and balancing the supply and demand of energy. Different energy storage techniques have been discussed, including batteries, flywheels, supercapacitors, pumped hydro energy storage, and others. Moreover, integration strategies of energy storage in microgrids, models, assessment indices, and optimization algorithms used in the design of energy storage systems are presented in detail. The capabilities of software used in energy storage sizing are explored. Further, uncertainty analysis in modeling energy storage devices is presented and discussed. This state-of-the-art technology has been prepared to demonstrate the effectiveness of energy storage technologies in microgrids, providing valuable insights for future developments in the field.
- Prince Sattam Bin Abdulaziz University Saudi Arabia
- University of Montenegro Montenegro
- University of Jaén Spain
- University of Jaén Spain
- University of Montenegro Montenegro
Technology, batteries, energy management, energy storage, microgrids, T, energy access, assessment indices
Technology, batteries, energy management, energy storage, microgrids, T, energy access, assessment indices
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
