
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Design, Integration, and Control of Organic Rankine Cycles with Thermal Energy Storage and Two-Phase Expansion System Utilizing Intermittent and Fluctuating Heat Sources—A Review

doi: 10.3390/en16165948
In order to lessen reliance on fossil fuels, a rise in interest in the utilization of fluctuating and intermittent heat sources derived from renewable energy (such as solar thermal, ocean thermal, and geothermal) and waste heat has been observed. These heat sources could be used to generate electricity at relatively low and medium temperatures, for example, through the organic Rankine cycle (ORC). In some case studies, various approaches have been developed to deal with and design ORCs in the desired operating condition utilizing suitable working fluids. This article aims to review some designs and integrated systems of ORC with thermal energy storage (TES) and a two-phase expansion system focusing on the utilization of medium- and low-temperature heat sources in which some subcritical ORCs are presented. Moreover, several possible control systems (both conventional and advanced ones) of ORC with TES and a two-phase expansion system are reported and compared. At the end of this article, the possible future developments of design and control systems are discussed to describe advanced ORC for utilizing low-grade heat sources. This study aims to provide researchers and engineers with an insight into the challenges involved in this process, making industrialization of ORC technology more extensive, in particular when combined with TES and a two-phase expansion system.
- Library and Information Centre of the Hungarian Academy of Sciences Hungary
- Budapest University of Technology and Economy Hungary
- Hungarian Academy of Sciences Hungary
- Magyar Tudományos Akadémia Könyvtára (Library of the Hungarian Academy of Sciences) Hungary
- Budapest University of Technology and Economy Hungary
690, Technology, phase change, T, T2 Technology (General) / műszaki tudományok általában, fluctuating heat sources, intermittent heat sources, ORC, phase equilibria, TES
690, Technology, phase change, T, T2 Technology (General) / műszaki tudományok általában, fluctuating heat sources, intermittent heat sources, ORC, phase equilibria, TES
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
