Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Université Grenoble ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low-Cost Passivated Al Front Contacts for III-V/Ge Multijunction Solar Cells

Authors: Olivier Richard; Artur Turala; Vincent Aimez; Maxime Darnon; Abdelatif Jaouad;

Low-Cost Passivated Al Front Contacts for III-V/Ge Multijunction Solar Cells

Abstract

Improving the performances and reducing costs of III-V multijunction solar cells are crucial in aerospatial energy systems and in terrestrial concentrator modules. We attempted to achieve both objectives by implementing non-ohmic metal/semiconductor interface contacts on the front surface of III-V/Ge triple-junction solar cells. We demonstrate the feasibility of this concept for this type of solar cell by a simple evaporation of Al only either on the GaAs contact layer or the AlInP window. The best results were obtained when sulfur passivation by (NH4)2Sx was conducted on the GaAs contact layer. This allowed for a reduction in reverse saturation dark current density by one order of magnitude and a slight increase in Voc of almost 20 mV under 1 sun illumination relative to a reference device with Pd/Ge/Ti/Pd ohmic contacts. However, poor performances were observed at first under concentrated sunlight. Further annealing the solar cells with Al front metallization resulted in the reduction of Voc to the same level as the reference solar cell but allowed for good performances under high illumination. Indeed, an efficiency over 34% was observed at 500 suns light intensity both for Al and Pd/Ge/Ti/Pd contacted solar cells.

Country
France
Keywords

Technology, T, contact metallization, 600, 530, [SPI]Engineering Sciences [physics], [SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic, concentrated photovoltaics, contact passivation, [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics, III-V

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
gold
Related to Research communities
Energy Research