
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An Incentive-Based Mechanism to Enhance Energy Trading among Microgrids, EVs, and Grid

doi: 10.3390/en16176359
The growing penetration of electric vehicles (EVs) introduces both opportunities and challenges for power grid operators. Incentivization is considered a viable option to tempt EV owners to participate in supporting the grid during peak load intervals while receiving compensation for their services. Therefore, this study proposes a two-step incentive mechanism to reduce the peak load of the grid by enabling power trading among the microgrid, EVs and the utility grid. In the first step, an incentive price is determined for EVs considering the grid-loading conditions during different hours of the day. In the second step, a multi-objective optimization problem is formulated to optimize trading among different entities, such as EVs, the microgrid and the utility grid. The two objectives considered in this study are the operation cost of the microgrid and the revenue of EVs. Monte Carlo simulations are used to deal with uncertainties associated with EVs. Simulations are conducted to analyze the impact of different weight parameters on the energy-trading amount and operation cost of EVs and MG. In addition, a sensitivity analysis is conducted to analyze the impact of changes in the EV fleet size on the energy-trading amount and operation cost.
- Incheon National University Korea (Republic of)
- University of Alberta Canada
- Incheon National University Korea (Republic of)
Technology, T, energy trading, microgrid, multi-objective optimization, equipment overload, incentive price, electric vehicles
Technology, T, energy trading, microgrid, multi-objective optimization, equipment overload, incentive price, electric vehicles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
