
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Impact Analysis of Metallization Design and Recombination Losses on Performance of Crystalline Silicon Solar Cells

doi: 10.3390/en16186505
Using Griddler software, this study aims to select the optimal metallization design by analyzing the impact of the number and sizes of busbars and fingers on a solar cell’s performance. There is interest in the PV industry to reduce the finger size toward 25 μm in upcoming years. It is shown that an increase in the number and size of busbars and fingers causes an increase in the fill factor; however, with regards to the cell’s efficiency, the shading factor should be considered in addition to the size and number of metal contacts. The results of this study indicate that solar cells’ efficiency could be increased by 0.33–0.84% when using five busbars and a finger width of 35 μm. Moreover, this increase is achieved by reducing the emitter resistance to less than 60 ohm/sq and considering a recombination rate of about 165 fA/cm2.
- University of Malaya Malaysia
- University of Malaya Malaysia
- Universiti Tenaga Nasional Malaysia
- Universiti Tenaga Nasional Malaysia
Technology, T, Griddler, metallization, recombination, solar cells, performance, energy
Technology, T, Griddler, metallization, recombination, solar cells, performance, energy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
