Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative Analysis of Real-Emitted Particulate Matter and PM-Bound Chemicals from Residential and Automotive Sources: A Case Study in Poland

Authors: Katarzyna Szramowiat-Sala; Katarzyna Styszko; Lucyna Samek; Magdalena Kistler; Mariusz Macherzyński; Jiří Ryšavý; Kamil Krpec; +3 Authors

Comparative Analysis of Real-Emitted Particulate Matter and PM-Bound Chemicals from Residential and Automotive Sources: A Case Study in Poland

Abstract

The awareness of environmental pollution has been continuously growing in recent decades and is currently reaching its maximum. Europe and most developed countries are determined to ensure safe breathing air for their citizens, and the measures to do so are stricter than ever before. Combustion procedures remain the primary means of producing energy and warmth in Poland. Among the notable constituents of flue gases produced as a result of fuel combustion, solid particles (or particulate matter) hold significant prominence. The paper presents the chemical characterisation of particulate matter emitted from stationary and automotive emission sources. Stationary emission sources included the combustion process of fossil fuels (soft wood, bituminous coal, ecopea coal, culm) in domestic heating units and the process of combustion of bituminous coal in a power plant. Automotive emission sources included light duty and medium duty vehicles fuelled by diesel. Exhaust toxicity tests were carried out maintaining the real conditions of PM emission. In all field measurements particulate matter was gravimetrically measured and collected on quartz or glass fibre filters. Subsequently, the content of carbonaceous fraction, inorganic ions, and metals and metalloids was analyzed using different analytical techniques. The chemical composition of the particulate matter differed depending on the emission source. With respect to stationary combustion sources, the main factors determining solid particle emission are related primarily to the fuel quality. The duty of vehicles was also a factor that influenced the chemical characterisation of the particulate matter emitted from the engines.

Country
Czech Republic
Keywords

particulate matter, Technology, T, mobile emission sources, stationary emission sources, solid fuels, combustion processes, liquid fuels

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold
Related to Research communities
Energy Research