Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Virtual Inertia Control in Autonomous Microgrids via a Cascaded Controller for Battery Energy Storage Optimized by Firefly Algorithm and a Comparison Study with GA, PSO, ABC, and GWO

Authors: Farhad Amiri; Mohsen Eskandari; Mohammad Hassan Moradi;

Virtual Inertia Control in Autonomous Microgrids via a Cascaded Controller for Battery Energy Storage Optimized by Firefly Algorithm and a Comparison Study with GA, PSO, ABC, and GWO

Abstract

Modern (micro) grids host inverter-based generation units for utilizing renewable and sustainable energy resources. Due to the lack of physical inertia and, thus, the low inertia level of inverter-interfaced energy resources, the frequency dynamic is adversely affected, which critically impacts the stability of autonomous microgrids. The idea of virtual inertia control (VIC), assisted by battery energy storage systems (BESSs), has been presented to improve the frequency dynamic in islanded microgrids. This study presents the PD-FOPID cascaded controller for the BESS, a unique method for enhancing the performance of VIC in islanded microgrids. Using the firefly algorithm (FA), the settings of this controller are optimally tuned. This approach is robust to disruptions due to uncertainties in islanded microgrids. In several scenarios, the performance of the suggested approach is compared with those of other control techniques, such as VIC based on an MPC controller, VIC based on a robust H-infinite controller, adaptive VIC, and VIC based on an optimized PI controller. The simulation results in MATLAB show that the suggested methodology in the area of VIC is better than previous methods.

Related Organizations
Keywords

Technology, renewable energy resources, T, optimization algorithm, autonomous microgrids, cascaded controller, battery energy storage systems (BESSs), inverter-interfaced energy resources

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold