Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Polyaniline-Based Ink for Inkjet Printing for Supercapacitors, Sensors, and Electrochromic Devices

Authors: Ekta Kundra Arora; Vibha Sharma; Aravind Ravi; Akanksha Shahi; Shweta Jagtap; Arindam Adhikari; Jatis Kumar Dash; +2 Authors

Polyaniline-Based Ink for Inkjet Printing for Supercapacitors, Sensors, and Electrochromic Devices

Abstract

In recent years, there has been a huge surge in interest in improving the efficiency of smart electronic and optoelectronic devices via the development of novel materials and printing technologies. Inkjet printing, known to deposit ‘ink on demand’, helps to reduce the consumption of materials. Printing inks on various substrates like paper, glass, and fabric is possible, generating flexible devices that include supercapacitors, sensors, and electrochromic devices. Newer inks being tested and used include formulations of carbon nanoparticles, photochromic dyes, conducting polymers, etc. Among the conducting polymers, PANI has been well researched. It can be synthesized and doped easily and allows for the easy formation of composite conductive inks. Doping and the addition of additives like metal salts, oxidants, and halide ions tune its electrical properties. PANI has a large specific capacitance and has been researched for its applications in supercapacitors. It has been used as a sensor for pH and humidity as well as a biosensor for sweat, blood, etc. The response is generated by a change in its electrical conductivity. This review paper presents an overview of the investigations on the formulation of the inks based on conductive polymers, mainly centered around PANI, and inkjet printing of its formulations for a variety of devices, including supercapacitors, sensors, electrochromic devices, and patterning on flexible substrates. It covers their performance characteristics and also presents a future perspective on inkjet printing technology for advanced electronic, optoelectronic, and other conductive-polymer-based devices. We believe this review provides a new direction for next-generation conductive-polymer-based devices for various applications.

Keywords

inkjet printing, Technology, supercapacitors, PSS, T, polyaniline, conducting polymers, PEDOT

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
gold
Related to Research communities
Energy Research