Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Steel, Aluminum, and FRP-Composites: The Race to Zero Carbon Emissions

Authors: Vaishnavi Vijay Rajulwar; Tetiana Shyrokykh; Robert Stirling; Tova Jarnerud; Yuri Korobeinikov; Sudip Bose; Basudev Bhattacharya; +2 Authors

Steel, Aluminum, and FRP-Composites: The Race to Zero Carbon Emissions

Abstract

As various regions around the world implement carbon taxes, we assert that the competitiveness of steel products in the marketplace will shift according to individual manufacturers’ ability to reduce CO2 emissions as measured by cradle-to-gate Life Cycle Analysis (LCA). This study was performed by using LCA and cost estimate research to compare the CO2 emissions and the additional cost applied to the production of various decarbonized materials used in sheet for automotive industry applications using the bending stiffness-based weight reduction factor. The pre-pandemic year 2019 was used as a baseline for cost estimates. This paper discusses the future cost scenarios based on carbon taxes and hydrogen cost. The pathways to decarbonize steel and alternative materials such as aluminum and reinforced polymer composites were evaluated. Normalized global warming potential (nGWP) estimates were calculated assuming inputs from the current USA electricity grid, and a hypothetical renewables-based grid. For a current electricity grid mix in the US (with 61% fossil fuels, 19% nuclear, 20% renewables), the lowest nGWP was found to be secondary aluminum and 100% recycled scrap melting of steel. This is followed by the natural gas Direct Reduced Iron–Electric Arc Furnace (DRI-EAF) route with carbon capture and the Blast Furnace-Basic Oxygen Furnace (BF-BOF) route with carbon capture. From the cost point of view, the current cheapest decarbonized production route is natural gas DRI-EAF with Carbon Capture and Storage (CCS). For a renewable electricity grid (50% solar photovoltaic and 50% wind), the lowest GWP was found to be 100% recycled scrap melting of steel and secondary aluminum. This is followed by the hydrogen-based DRI-EAF route and natural gas DRI-EAF with carbon capture. The results indicate that, when applying technologies available today, decarbonized steel will remain competitive, at least in the context of automotive sheet selection compared to aluminum and composites.

Country
United Kingdom
Related Organizations
Keywords

Technology, decarbonization, Materials cost, steel manufacturing, carbon fiber composite manufacturing, T, life cycle analysis, Decarbonization, materials cost, aluminum manufacturing, Glass fiber composite manufacturing, Steel manufacturing, Aluminum manufacturing, Carbon fiber composite manufacturing, Life cycle analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
Green
gold