Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prediction Modeling of Flue Gas Control for Combustion Efficiency Optimization for Steel Mill Power Plant Boilers Based on Partial Least Squares Regression (PLSR)

Authors: Sang-Mok Lee; So-Won Choi; Eul-Bum Lee;

Prediction Modeling of Flue Gas Control for Combustion Efficiency Optimization for Steel Mill Power Plant Boilers Based on Partial Least Squares Regression (PLSR)

Abstract

The energy-intensive steel industry, which consumes substantial amounts of electricity, meets its power demands through external electricity purchases and self-generation through the operation of its own generators. This study aimed to optimize boiler combustion efficiency and increase power generation output by deriving optimal operational values for O2 and CO within the boiler flue gas using machine learning (ML) with the aim of achieving maximum boiler efficiency. This study focuses on the power-generation boilers at steel mill P in Korea. First, 361 types of operation data from power generation equipment were collected and preprocessed. Subsequently, a partial least squares regression (PLSR) algorithm was used to develop a prediction model for O2 and CO values, known as the Boiler Flue Gas Prediction Model (BFG-PM). The prediction accuracy for O2 was notably high (83.2%), whereas that for CO was lower (53.4%). Nonetheless, the model’s reliability was high because more than 90% of the predicted values were within a 10% error range. Finally, the correlation of the BFG-PM model was applied to the performance test code (PTC) 4.0 for the boiler efficiency calculations formula, deriving the optimal O2 and CO control points. Through a simulation, it was verified that the boiler efficiency was improved by controlling the combustion air. In addition, an average increase in boiler efficiency of 0.29% was confirmed by applying it directly to the generator operating on-site. The results of this study are expected to contribute to annual cost savings, with a reduction of USD 217,000 in electricity purchasing costs and USD 19,700 in greenhouse gas emissions trading expenses.

Keywords

Technology, power plant in steel mill, T, boiler efficiency, combustion control, flue gas prediction, machine learning, regression

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold