Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Forecasting and Scenario Analysis of Carbon Emissions in Key Industries: A Case Study in Henan Province, China

Authors: Yilin Guo; Zhengmeng Hou; Yanli Fang; Qichen Wang; Liangchao Huang; Jiashun Luo; Tianle Shi; +1 Authors

Forecasting and Scenario Analysis of Carbon Emissions in Key Industries: A Case Study in Henan Province, China

Abstract

In a global context where sustainable growth is imperative, understanding carbon emissions in significant regions is essential. Henan Province, being a vital region in China for population, agriculture, industry, and energy consumption, plays a crucial role in this understanding. This study, rooted in the need to identify strategies that not only meet China’s broader carbon neutrality objectives but also offer insights regarding global sustainability models, utilizes the STIRPAT model combined with scenario analysis. The aim was to forecast carbon emission trajectories from 2020 to 2060 across the key industries—electricity, steel, cement, transportation, coal, and chemical—that are responsible for over 80% of the total emissions in Henan. The findings suggest a varied carbon peak timeline: the steel and cement industries might achieve their peak before 2025, and the transportation, coal, and chemical sectors might achieve theirs around 2030, whereas that of the power industry could be delayed until 2033. Significantly, by 2060—a landmark year for Chinese carbon neutrality ambitions—only the electricity sector in Henan shows potential for zero emissions under an extreme scenario. This study’s results underscore the importance of region-specific strategies for achieving global carbon neutrality and offer a blueprint for other populous, industrialized regions worldwide.

Related Organizations
Keywords

Technology, carbon emission trajectories, T, carbon neutrality, scenario analysis, STIRPAT extended model, key industries in Henan Province

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold