Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Leveraging Behavioral Correlation in Distribution System State Estimation for the Recognition of Critical System States

Authors: Eva Buchta; Mathias Duckheim; Michael Metzger; Paul Stursberg; Stefan Niessen;

Leveraging Behavioral Correlation in Distribution System State Estimation for the Recognition of Critical System States

Abstract

State estimation for distribution systems faces the challenge of dealing with limited real-time measurements and historical data. This work describes a Bayesian state estimation approach tailored for practical implementation in different data availability scenarios, especially when both real-time and historical data are scarce. The approach leverages statistical correlations of the state variables from a twofold origin: (1) from the physical coupling through the grid and (2) from similar behavioral patterns of customers. We show how these correlations can be parameterized, especially when no historical time series data are available, and that accounting for these correlations yields substantial accuracy gains for state estimation and for the recognition of critical system states, i.e., states with voltage or current limit violations. In a case study, the approach is tested in a realistic European-type, medium-voltage grid. The method accurately recognizes critical system states with an aggregated true positive rate of 98%. Compared to widely used approaches that do not consider these correlations, the number of undetected true critical cases can be reduced by a factor of up to 9. Particularly in the case where no historical smart meter time series data is available, the recognition accuracy of critical system states is nearly as high as with full smart meter coverage.

Related Organizations
Keywords

distribution system, medium voltage grid, smart meter, Bayesianstate estimation, Technology, T, distribution system state estimation, load correlations

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold