Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy Performance of Different Charcoal Production Systems

Authors: Francisco Fernandes Bernardes; Thiago Libório Romanelli; Allana Katiussya Silva Pereira; Gabriela Fontes Mayrinck Cupertino; Márcia Aparecida Fernandes; José Otávio Brito; Elias Costa de Souza; +2 Authors

Energy Performance of Different Charcoal Production Systems

Abstract

This study aimed to assess the energy performance of three different charcoal production systems: “encosta” kiln, “rectangular” kiln, and “fornalha” kiln. Data collection involved measuring carbonization product yields and essential process variables, enabling determination of material and energy flows, and evaluation of two main energy indicators: the EROI and the energy balance. The study found that all evaluated systems had a negative energy balance, indicating inefficiency. The encosta kiln system displayed the best energy performance with the highest EROI (0.90 ± 0.45) and the greatest energy intensity (264.50 MJ t−1 ± 132.25), despite having faced technological, operational, and mechanization limitations that explained its limited use on a global scale. Research that evaluates the sustainable production of charcoal has grown in recent years, however, and it is necessary to invest in studies that evaluate the existing energy flow. Thus, the energy performance indicators presented in this study offer valuable insights for decision-making in charcoal production, potentially maximizing efficiency of the systems. Optimizing carbonization system energy performance can be achieved by implementing operational parameters focused on reducing avoidable energy losses, such as improving thermal insulation and introducing systems for heat recovery or combustion gas utilization.

Keywords

Technology, EROI, T, charcoal kilns, energy balance, environmental analysis, material flow

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold