Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

3D Heterogeneous Model for Electrodes in Lithium-Ion Batteries to Study Interfacial Detachment of Active Material Particles and Carbon-Binder Domain

Authors: Mirsalehian, Mohammadali; Vossoughi, Bahareh; Kaiser, Jörg; Pischinger, Stefan;

3D Heterogeneous Model for Electrodes in Lithium-Ion Batteries to Study Interfacial Detachment of Active Material Particles and Carbon-Binder Domain

Abstract

Mechanics plays a crucial role in the performance and lifespan of lithium-ion battery (LIB) cells. Thus, it is important to address the interplay between electrochemistry and mechanics in LIBs, especially when aiming to enhance the energy density of electrodes. Accordingly, this work introduces a framework for a fully coupled electro-chemo-mechanical heterogeneous 3D model that allows resolving the inhomogeneities accompanied by electrochemical and mechanical responses of LIB electrodes during operation. The model is employed to numerically study the mechanical degradation of a nickel manganese cobalt (NMC) cathode electrode, assembled in a half-cell, upon cycling. As opposed to previous works, a virtual morphology for a high-energy electrode with low porosity is developed in this study, which comprises distinct domains of active material (AM) particles, the carbon-binder domain (CBD), and the pore domain to resemble real commercial electrodes. It is observed that the mechanical strain mismatch between irregularly and randomly positioned AM particles and the CBD might lead to local contact detachment. This interfacial gap, in combination with the diminishing contact strength over cell cycling, continuously deteriorates the electrode performance upon cycling by impedance rise and capacity drop. In agreement with previous experimental reports, the presented simulation results exhibit that the contact loss mostly takes place in the regions closer to the separator. Eventually, the resulting gradual capacity drop and change in impedance spectrum over cycling, as the consequence of interfacial gap formation, are discussed and indicated.

Country
Germany
Related Organizations
Keywords

Technology, electrode microstructure, T, lithium-ion batteries, mechanical degradation, 620, electrochemical impedance spectroscopy, heterogeneous physical model, info:eu-repo/classification/ddc/620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities
Energy Research