
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Rollover Prevention Model for Stratified Liquefied Natural Gas in Storage Tanks

doi: 10.3390/en16227666
At least 24 liquefied natural gas (LNG) rollover incidents have been reported since 1960. During rollover, because of the heat ingress through the tank walls, a stratified LNG may be suddenly homogenized while releasing massive amounts of vapor. It can result in an overpressure in the tank and significant amounts of potentially explosive LNG vapor being vented out. Both of these factors represent considerable hazards. Rollover is a physical mixing process in a single tank with two or more different cells of LNG of different compositions, temperatures, and densities that can manifest in large boil-off rates. It can exceed venting equipment capacities, and vapor pressure in tank increases rapidly and in extreme cases can lead to tank damage. This paper presents numerical approach for determination of time of rollover occurrence in storage tank. The presented model is based on the energy balance of the stratified cryogenic liquid and the gas phase as separate three thermodynamic systems in the storage tank. As a result of proposed model, for the adopted assumptions and cylindrical tank volume of 78,500 m3, the approximate time of the rollover occurrence was determined for two cases. In the first case, for heavier LNG, the rollover phenomenon will occur 193.25 h after the start of the calculations from the assumed initial conditions. In the second case, for light LNG with a higher initial liquid level in the tank, the rollover will occur after 150.25 h.
- Jagiellonian University Poland
- AGH University of Krakow Poland
- AGH University of Krakow Poland
- AGH University of Science and Technology Poland
rollover model, Technology, T, rollover, LNG, boil-off gas, evaporation
rollover model, Technology, T, rollover, LNG, boil-off gas, evaporation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
