
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Decomposition Analysis of Regional Electricity Consumption Drivers Considering Carbon Emission Constraints: A Comparison of Guangdong and Yunnan Provinces in China

doi: 10.3390/en16248052
Electricity consumption is closely linked to economic growth, social development, and carbon emissions. In order to fill the gap of previous studies on the decomposition of electricity consumption drivers that have not adequately considered carbon emission constraint, this study constructs the Kaya extended model of electricity consumption and analyzes the effects of drivers in industrial and residential sectors using the Logarithmic Mean Divisia Index (LMDI) method, and empirically explores the temporal and spatial differences in electricity consumption. Results show that: (1) During 2005–2021, the total final electricity consumption growth in Guangdong was much higher than that in Yunnan, but the average annual growth rate in Guangdong was lower, and the largest growth in both provinces was in the industrial sector. (2) The labor productivity level effect is the primary driver that increases total final electricity consumption (Guangdong: 78.5%, Yunnan: 87.1%), and the industrial carbon emission intensity effect is the primary driver that decreases total final electricity consumption (Guangdong: −75.3%, Yunnan: −72.3%). (3) The year-to-year effect of each driver by subsector is overall positively correlated with the year-to-year change in the corresponding driver, and declining carbon emission intensity is a major factor in reducing electricity consumption. (4) The difference in each effect between Guangdong and Yunnan is mainly determined by a change in the corresponding driver and subsectoral electricity consumption. Policy implications are put forward to promote energy conservation and the realization of the carbon neutrality goal.
- Guangzhou Institute of Geochemistry China (People's Republic of)
- University of Jinan China (People's Republic of)
- Guangzhou Institute of Geochemistry China (People's Republic of)
- Jinan University China (People's Republic of)
- Guangzhou Institute of Energy Conversion China (People's Republic of)
Technology, T, temporal and spatial differences, carbon emissions constraint, decomposition analysis, regional electricity consumption, LMDI
Technology, T, temporal and spatial differences, carbon emissions constraint, decomposition analysis, regional electricity consumption, LMDI
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
