
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cluster-Based Approach to Estimate Demand in the Polish Power System Using Commercial Customers’ Data

doi: 10.3390/en16248070
This paper presents an approach to estimate demand in the Polish Power System (PPS) using the historical electricity usage of 27 thousand commercial customers, observed between 2016 and 2020. The customer data were clustered and samples as well as features were created to build neural network models. The goal of this research is to analyze if the clustering of customers can help to explain demand in the PPS. Additionally, considering that the datasets available for commercial customers are typically much smaller, it was analyzed what a minimal sample size drawn from the clusters would have to be in order to accurately estimate demand in the PPS. The evaluation and experiments were conducted for each year separately; the results proved that, considering adjusted R2 and mean absolute percentage error, our clustering-based method can deliver a high accuracy in the load estimation.
- Rzeszów University of Technology Poland
- Warsaw University of Life Sciences Poland
- Systems Research Institute Poland
- Rzeszów University of Technology Poland
- INTI International University Malaysia
Technology, T, commercial customers, neural networks, Polish Power System, demand model, energy usage, clustering
Technology, T, commercial customers, neural networks, Polish Power System, demand model, energy usage, clustering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
