Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2024
Data sources: UCL Discovery
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Instantaneous Electricity Peak Load Forecasting Using Optimization and Machine Learning

Authors: Mustafa Saglam; Xiaojing Lv; Catalina Spataru; Omer Ali Karaman;

Instantaneous Electricity Peak Load Forecasting Using Optimization and Machine Learning

Abstract

Accurate instantaneous electricity peak load prediction is crucial for efficient capacity planning and cost-effective electricity network establishment. This paper aims to enhance the accuracy of instantaneous peak load forecasting by employing models incorporating various optimization and machine learning (ML) methods. This study examines the impact of independent inputs on peak load estimation through various combinations and subsets using multilinear regression (MLR) equations. This research utilizes input data from 1980 to 2020, including import and export data, population, and gross domestic product (GDP), to forecast the instantaneous electricity peak load as the output value. The effectiveness of these techniques is evaluated based on error metrics, including mean absolute error (MAE), mean square error (MSE), mean absolute percentage error (MAPE), root mean square error (RMSE), and R2. The comparison extends to popular optimization methods, such as particle swarm optimization (PSO), and the newest method in the field, including dandelion optimizer (DO) and gold rush optimizer (GRO). This comparison is made against conventional machine learning methods, such as support vector regression (SVR) and artificial neural network (ANN), in terms of their prediction accuracy. The findings indicate that the ANN and GRO approaches produce the least statistical errors. Furthermore, the correlation matrix indicates a robust positive linear correlation between GDP and instantaneous peak load. The proposed model demonstrates strong predictive capabilities for estimating peak load, with ANN and GRO performing exceptionally well compared to other methods.

Country
United Kingdom
Keywords

Technology, particle swarm optimization, T, forecast, gold rush optimizer, support vector regression, dandelion optimizer, peak load, artificial neural network

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Top 10%
Green
gold