
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Design of Lumped Disturbance Observer in Current Loop of IPMSM Based on Recursive Integral Sliding Mode Surface

doi: 10.3390/en17040836
To overcome the problem of current control effect being reduced by unideal factors in a motor control system, such as motor parameter variation, inverter dead time, nonlinearity of the system, etc., a sliding mode disturbance observer for an interior permanent magnet synchronous motor is proposed in this paper. The model of an interior permanent magnet synchronous motor with unideal factors is designed, and the unideal factors are unified into lumped disturbances of motor stator voltage. Then, the observer for lumped disturbance is designed. A recursive integral sliding surface is used to replace the terminal sliding surface to avoid the noise sensitivity and singularity problem of the traditional terminal sliding mode observer. The observer can estimate the lumped disturbance of the current loop without relying on the accurate system model in finite time. Moreover, the structure of the current loop does not need to be adjusted while using the observer to observe and compensate for disturbances. Experiments are carried out to verify the effectiveness of the proposed observer.
- Harbin Institute of Technology China (People's Republic of)
- Harbin Institute of Technology China (People's Republic of)
Technology, disturbance estimate, interior permanent magnet synchronous motor, T, sliding mode disturbance observer, recursive integral sliding surface
Technology, disturbance estimate, interior permanent magnet synchronous motor, T, sliding mode disturbance observer, recursive integral sliding surface
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
