
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Lithium-Ion Batteries on Board: A Review on Their Integration for Enabling the Energy Transition in Shipping Industry

doi: 10.3390/en17051019
handle: 20.500.14243/520816
Lithium-Ion Batteries on Board: A Review on Their Integration for Enabling the Energy Transition in Shipping Industry
The emission reductions mandated by International Maritime Regulations present an opportunity to implement full electric and hybrid vessels using large-scale battery energy storage systems (BESSs). lithium-ionion batteries (LIB), due to their high power and specific energy, which allows for scalability and adaptability to large transportation systems, are currently the most widely used electrochemical storage system. Hence, BESSs are the focus of this review proposing a comprehensive discussion on the commercial LIB chemistries that are currently available for marine applications and their potential role in ship services. This work outlines key elements that are necessary for designing a BESS for ships, including an overview of the regulatory framework for large-scale onboard LIB installations. The basic technical information about system integration has been summarized from various research projects, white papers, and test cases mentioned in available studies. The aim is to provide state-of-the-art information about the installation of BESSs on ships, in accordance with the latest applicable rules for ships. The goal of this study is to facilitate and promote the widespread use of batteries in the marine industry.
Technology, transport electrification, T, lithium-ion batteries, emission reduction, battery integration, marine regulations, BESS, ships
Technology, transport electrification, T, lithium-ion batteries, emission reduction, battery integration, marine regulations, BESS, ships
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
