
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Quantum Computing as a Game Changer on the Path towards a Net-Zero Economy: A Review of the Main Challenges in the Energy Domain

doi: 10.3390/en17051039
Quantum Computing as a Game Changer on the Path towards a Net-Zero Economy: A Review of the Main Challenges in the Energy Domain
The aim of this paper is to report on the state of the art of the literature on the most recent challenges in the energy domain that can be addressed through the use of quantum computing technology. More in detail, to the best of the authors’ knowledge, the scope of the literature review considered in this paper is specifically limited to forecasting, grid management (namely, scheduling, dispatching, stability, and reliability), battery production, solar cell production, green hydrogen and ammonia production, and carbon capture. These challenges have been identified as the most relevant business needs currently expressed by energy companies on their path towards a net-zero economy. A critical discussion of the most relevant methodological approaches and experimental setups is provided, together with an overview of future research directions. Overall, the key finding of the paper, based on the proposed literature review, is twofold: namely, (1) quantum computing has the potential to trigger significant transformation in the energy domain by drastically reducing CO2 emissions, especially those relative to battery production, solar cell production, green hydrogen and ammonia production, as well as point-source and direct-air carbon capture technology; and (2) quantum computing offers enhanced optimization capability relative to relevant challenges that concern forecasting solar and wind resources, as well as managing power demand, facility allocation, and ensuring reliability and stability in power grids.
Technology, net-zero economy, T, forecasting, battery production, stability and resilience, quantum computing, grid management
Technology, net-zero economy, T, forecasting, battery production, stability and resilience, quantum computing, grid management
3 Research products, page 1 of 1
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
