
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Fluid–Structure Interaction Simulations of Wind Turbine Blades with Pointed Tips

doi: 10.3390/en17051090
The aerodynamic shapes of the blades are of great importance in wind turbine design to achieve better overall turbine performance. Fluid–structure interaction (FSI) analyses are normally carried out to take into consideration the effects due to the loads between the air flow and the turbine structures. A structural integrity check can then be performed, and the structural/material design can be optimized accordingly. In this study, three different tip shapes are investigated based on the original blade of the test wind turbine (Phase VI) from the National Renewable Energy Laboratory (NREL). A one-way coupled simulation of FSI is conducted, and results with a focus on stresses and deformations along the span of the blade are investigated. The results show that tip modifications of the blade have the potential to effectively increase the power generation of wind turbines while ensuring adequate structural strength. Furthermore, instead of using more complicated but computationally expensive techniques, this study demonstrates an effective approach to making quality observations of this highly nonlinear phenomenon for wind turbine blade design.
- Prairie View A&M University United States
- Prairie View A&M University United States
Technology, fluid–structure interactions, wind turbines, T, tip shape modification
Technology, fluid–structure interactions, wind turbines, T, tip shape modification
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
