Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Rowan University: Ro...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hybrid Deloading Control Strategy in MMC-Based Wind Energy Conversion Systems for Enhanced Frequency Regulation

Authors: Jimiao Zhang; Jie Li;

Hybrid Deloading Control Strategy in MMC-Based Wind Energy Conversion Systems for Enhanced Frequency Regulation

Abstract

The growing integration of renewable energy sources, especially offshore wind (OSW), is introducing frequency stability challenges to electric power grids. This paper presents a novel hybrid deloading control strategy that enables modular multilevel converter (MMC)-based wind energy conversion systems (WECSs) to actively contribute to grid frequency regulation. This research investigates a permanent-magnet synchronous generator (PMSG)-based direct-drive configuration, sourced from the International Energy Agency’s (IEA’s) 15 MW reference turbine model. Specifically, phase-locked loop (PLL)-free grid-forming (GFM) control is employed via the grid-side converter (GSC), and DC-link voltage control is realized through the machine-side converter (MSC), both of which boost the energy support for the integrated AC grid’s frequency stability. This control strategy combines the benefits of over-speeding and pitch control modes, facilitating smooth transitions between different modes based on real-time wind speed measurements. In addition, the practical challenges of MMCs, such as circulating currents and capacitor voltage imbalances, are addressed. Numerical simulations under varying wind speeds and loading conditions validate the enhanced frequency regulation capability of the proposed approach.

Country
United States
Keywords

grid-forming (GFM) control, Technology, T, 600, Power and Energy, Electrical and Computer Engineering, deloading control, frequency regulation, modular multilevel converter (MMC), offshore wind (OSW)

Powered by OpenAIRE graph
Found an issue? Give us feedback