Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: Sygma
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sustainability and Resilience Assessment Methods: A Literature Review to Support the Decarbonization Target for the Construction Sector

Authors: Sesana, Marta Maria; Dell’Oro, Paolo;

Sustainability and Resilience Assessment Methods: A Literature Review to Support the Decarbonization Target for the Construction Sector

Abstract

It is a well-known issue that the 2050 target of carbon emissions neutrality will be reached only with the co-operation of all the interested sectors, and the construction sector could be one of the main contributors to this change. With the built environment globally responsible for about 40% of annual global energy-related CO2 emissions, the construction sector offers an important opportunity to drive transformative change and presents the most challenging mitigation potential among all industrial sectors, which also brings opportunities for adopting sustainability practices and increasing resilience. This paper presents a systematic literature review of those two pivotal concepts to reach the decarbonization goal: sustainability and resilience. Starting from an extensive literature review (2536 scientific documents) based on the PRISMA statement, the definitions and assessment methodologies of those concepts for the construction sector have been studied. The methodological approach followed for their analysis has been conducted on a first selection of 42 documents, further reduced to 12 by using clear inclusion criteria to identify the integrated assessment procedures. The main goal of this study is to clarify the correlation between sustainability and resilience concepts for constructions and their integrated assessment, in line with the latest regulations and market needs. The results show that, currently, sustainability and resilience are mainly evaluated in a distinct way to obtain building energy performance certificates, as well as to quantify the building market value and its complementary contribution to the ‘energy efficiency first’ principle and energy-saving targets towards the emergent issue of climate change. Few works focus on the integrated assessment of both concepts considering the construction industries’ point of view about materials and/or systems for buildings. The novelty of this study is the critical review of the current sustainability and resilience integrated assessment methods used for the construction value chain, declined for four main target groups. Researchers, policymakers, industries, and professionals could gain dedicated insights and practical suggestions to put in practice the elements of circular economy, ecological innovation, and cleaner production, which are essential in order to drive the decarbonization of the built environment.

Country
Italy
Related Organizations
Keywords

Technology, decarbonization, T, sustainability, construction sector, assessment methods, sustainability; resilience; decarbonization; assessment methods; construction sector, resilience

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold