Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ METRology Institutio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of Size and Morphology of Different ZnO Nanostructures on the Performance of Dye-Sensitized Solar Cells

Authors: Sunandan Baruah; Rakesh A. Afre; Diego Pugliese;

Effect of Size and Morphology of Different ZnO Nanostructures on the Performance of Dye-Sensitized Solar Cells

Abstract

In this study, the influence of zinc oxide (ZnO) nanostructures with various morphologies on the performance of dye-sensitized solar cells (DSSCs) was investigated. Photo-electrodes were fabricated incorporating ZnO transport layers of distinct nanoscale morphologies—namely nanoparticles, microballs, spiky microballs, belts, and triangles—and their respective current–voltage characteristics were evaluated. It was observed that the DSSCs employing the triangular ZnO nanostructures, with a side length of approximately 30 nm, achieved the highest power conversion efficiency of 2.62%. This was closely followed by the DSSCs using spherical nanoparticles with an average diameter of approximately 20 nm, yielding an efficiency of 2.54%. In contrast, the efficiencies of DSSCs with microball and spiky microball ZnO nanostructures were significantly lower, measuring 0.31 and 1.79%, respectively. The reduction in efficiency for the microball-based DSSCs is attributed to the formation of micro-cracks within the thin film during the fabrication process. All DSSC configurations maintained a uniform active area of 4 mm². Remarkably, the highest fill factor of 59.88% was recorded for DSSCs utilizing the triangular ZnO morphology, with the spherical nanoparticles attaining a marginally lower fill factor of 59.38%. This investigation corroborates the hypothesis that reduced particle size in the transport layer correlates with enhanced DSSC performance, which is further amplified when the nanoparticles possess pointed geometries that induce strong electric fields due to elevated charge concentrations.

Country
Italy
Keywords

Technology, zinc oxide, nano morphology, dye-sensitized solar cells, microballs, belts, triangles, T, zinc oxide, triangles, microballs, dye-sensitized solar cells, nano morphology, belts

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
Green
gold
Related to Research communities
Energy Research