Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combined Effects of Thermal Buoyancy, Wind Action, and State of the First-Floor Lobby Entrance on the Pressure Difference in a High-Rise Building

Authors: Haiwei Xu; Lingfeng Su; Wenjuan Lou; Hongyang Shan;

Combined Effects of Thermal Buoyancy, Wind Action, and State of the First-Floor Lobby Entrance on the Pressure Difference in a High-Rise Building

Abstract

The stack effect in high-rise buildings, stemming from an inside/outside temperature difference, may produce a significant pressure difference on the elevator doors, potentially causing elevator malfunctions. This effect can also be influenced by wind action and human behaviors, e.g., opening/closing of building entrances. In this study, a wind tunnel test was conducted to determine the real wind pressure distribution on a high-rise building in northern China. A numerical simulation utilizing the Conjunction of Multizone Infiltration Specialists software (COMIS) was carried out to investigate the pressure difference of elevator doors under the effects of thermal buoyancy, wind action, and opening/closing of the first-floor lobby entrance. An alternative solution of a locally strengthened envelope is proposed and validated for the studied building zone. The study reveals that the opening of the first-floor lobby entrance increases the pressure difference regardless of the environmental conditions, and the increase of wind speed tends to increase the pressure difference in winter but decrease it in summer. The proposed countermeasure combination, involving using revolving doors instead of swing doors, increasing additional partitions, and strengthening the local building envelope, was found to be synergistic and effective in reducing the pressure difference inside the building. The research findings offer practical engineering solutions for mitigating elevator door pressure challenges in high-rise buildings.

Related Organizations
Keywords

Technology, T, high-rise building, pressure difference, pressure mitigation, wind tunnel test, COMIS simulation

Powered by OpenAIRE graph
Found an issue? Give us feedback