Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Application of Recycled Filling to Improve the Purification Performance of Confectionery Wastewater in a Vertical Anaerobic Labyrinth Flow Bioreactor

Authors: Marcin Dębowski; Joanna Kazimierowicz; Aneta Ignaciuk; Sandra Mlonek; Marcin Zieliński;

Application of Recycled Filling to Improve the Purification Performance of Confectionery Wastewater in a Vertical Anaerobic Labyrinth Flow Bioreactor

Abstract

Anaerobic wastewater treatment is, in many cases, a justified alternative to typical activated sludge processes, from a technological, economic, and ecological point of view. The optimisation of fermentation reactors is primarily concerned with increasing the biodegradation of organic compounds and biogas production, as well as improving efficiency in the removal of nitrogen and phosphorus compounds. The aim of the research was to determine the impact of using low-cost recycled filling on the efficiency of treating real confectionery wastewater in a vertical anaerobic labyrinth flow bioreactor. The experiments focused on selecting the organic loading rate that would allow for the effective biodegradation and removal of pollutants, as well as the efficient production of biomethane. It was found that the tested reactor can operate efficiently at a maximum organic loading rate (OLR) of 7.0–8.0 g of chemical oxygen demand (COD)/L·d. In this OLR range, high efficiency was guaranteed for both wastewater treatment and biogas production. However, increasing the OLR value to 8.0 g COD/L·d had a significant negative effect on the methane (CH4) content in the biogas. The most efficient variants achieved a biodegradation efficiency of around 90% of the organic compounds, a CH4 content of over 70% in the biogas, and a biogas yield of over 400 L/kg of COD removed. A significant influence of the applied OLR on the ratio of free organic acids (FOS) to total alkaline capacity (TAC) and pH was observed, as well as a strong correlation of these indicators with the specific biogas yield and CH4 content. The application of a solution based on the use of a hybrid system of anaerobic granulated sludge and an anaerobic filter resulted in an efficient treatment process and an almost complete elimination of suspensions from the wastewater.

Keywords

Technology, methane fermentation, T, confectionery wastewater, anaerobic reactor, anaerobic biological filter, anaerobic granular sludge, recycled filling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold