Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hybrid Advanced Control Strategy for Post-Combustion Carbon Capture Plant by Integrating PI and Model-Based Approaches

Authors: Flavia-Maria Ilea; Ana-Maria Cormos; Vasile Mircea Cristea; Calin-Cristian Cormos;

Hybrid Advanced Control Strategy for Post-Combustion Carbon Capture Plant by Integrating PI and Model-Based Approaches

Abstract

Even though the energy penalties and solvent regeneration costs associated with amine-based absorption/stripping systems are important challenges, this technology remains highly recommended for post-combustion decarbonization systems given its proven capture efficacy and technical maturity. This study introduces a novel centralized and decentralized hybrid control strategy for the post-combustion carbon capture plant, aimed at mitigating main disturbances and sustaining high system performance. The strategy is rooted in a comprehensive mathematical model encompassing absorption and desorption columns, heat exchangers and a buffer tank, ensuring smooth operation and energy efficiency. The buffer tank is equipped with three control loops to finely regulate absorber inlet solvent solution parameters, preventing disturbance recirculation from the desorber. Additionally, a model-based controller, utilizing the model predictive control (MPC) algorithm, maintains a carbon capture yield of 90% and stabilizes the reboiler liquid temperature at 394.5 K by manipulating the influent flue gas to the lean solvent flowrates ratio and the heat duty of the reboiler. The hybrid MPC approach reveals efficiency in simultaneously managing targeted variables and handling complex input–output interactions. It consistently maintains the controlled variables at desired setpoints despite CO2 flue gas flow disturbances, achieving reduced settling time and low overshoot results. The hybrid control strategy, benefitting from the constraint handling ability of MPC, succeeds in keeping the carbon capture yield above the preset minimum value of 86% at all times, while the energy performance index remains below the favorable value of 3.1 MJ/kgCO2.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average